
PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Introduction
The objective is to create Mac and

Windows programs in Pascal, using as
much common code as possible. The strat-
egy is to use a single code base in
Metrowerks CodeWarrior to create non-
interface libraries for Mac and Windows.
The user interface for Windows will be
created in Inprise Borland Delphi (where
such things are easy) making calls to the
DLL produced by CodeWarrior as needed.
The user interface for Mac takes more ef-
fort, since no real RAD compiler
environments exist. However, in this paper
we are coming from the point of view of an
experienced Mac developer and so creating
the Mac interface is not considered a seri-
ous obstacle.

The topics to be covered in this paper
include:

• Differences in variable types between
the development platforms

• Differences in calling conventions
between the development platforms

• Handshaking from apps to DLLs
• Notes about using Delphi, from a Mac

lover’s point of view
The live presentation at MacHack will

illustrate these issues with a working
crossplatform project, live examples of both
environments, and some operational issues.

About Delphi
Delphi is a RAD (rapid application

development) IDE that sports tightly inte-

grated interface construction and program
development, all based on a variant of
Pascal. For those unfamiliar with RAD
programming, there is simply no product of
equivalent power and price on the Mac, sad
to say. The closest approximation may be
Visual Café , which does not do native
compilation, is not nearly as ambitious in
scope, and is not as well supported by
third-party products.

Delphi is a product of Inprise Corpora-
tion, formerly known as Borland. The
Borland name survives as a brand name for
Inprise’s family of development products.

How to Create a DLL with
CodeWarrior Pascal
Surprise! This step is easy:

Metrowerks provides project stationery to
create a new Windows DLL using Pascal.
You’ll find the sample code (dll.p) to be
beautifully simple.

Using CodeWarrior’s wondrous ability
to specify multiple targets in one project,
it’s possible to generate a Mac 68K applica-
tion, a Mac PowerPC application and a
Windows DLL within a single Pascal
project, making use of the same core Unit
for all targets. This has been done in the
“Mac/Win/DLL” project which is supplied
with this paper.

Our focus here is on developing librar-
ies for non-interface purposes. However,
it’s helpful to have a supplemental unit of
routines to implement crucial platform-
specific functions. An example is declaring,

Writing Cross-Platform Libraries in Pascal
by Kevin Killion <kevin@shsmedia.com>

It is possible and practical to build Pascal units that are usable from both CodeWarrior on the
Mac and Delphi on Windows. As experience in Delphi increases, the Mac Pascal programmer will
also discover much that is appealing “over there” , more than enough to compensate for quirks and
omissions. The live presentation of this paper will be augmented with a demonstration of the devel-
opment environment described, and running examples.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

accessing and disposing memory blocks,
which we implement in
“PortableMemory.p”. This will be de-
scribed in the live session.

Passing Data Between CW
and Delphi
A key challenge is understanding

differences between how CodeWarrior and
Delphi store and handle various data types.
We’ll cover that in this section.

Numeric Types
Watch out for differences in numeric

types. When passing values between a DLL
and a host application, you need to make
sure that both sides are using the correct
data type.

For example, a “real” is defined as a 4-
byte floating point value on Think Pascal
and Metrowerks, but “real” is defined as a
6-byte float on Delphi. To pass a 4-byte
float, you need to use the type “single” on
Delphi.

You must also be careful with integers:
the type “integer” has different lengths in
different versions of Delphi. In 16-bit Del-
phi, “integer” is two bytes, in 32-bit Delphi,
“integer” is four bytes.

Here are some equivalents:

Floating Point Numerics
#bytes Mac Delphi

4 real single
6 n.a. real
8 double double

Integers
Mac Mac

#bytes Think Pascal CW Pascal Delphi
1 n.a. n.a. shortint
2 integer integer smallint
4 longint longint longint

2 or 4 -- -- integer
8 computational comp comp

Note that byte length is only one char-
acteristic to determine if types match,
especially with the floating point types.

The types shown in the tables above do
match on all characteristics; for example, a
Mac “real” and a Delphi “single” have the
same internal representations.

Note that Think Pascal’s “computa-
tional” type is stored just as you’d expect
an integral value to be stored, and that’s
identical to CodeWarrior’s and Delphi’s
“comp” type. Nonetheless, Think Pascal
prefers to consider “computational” as a
special type of real, that has no decimal
places. Go figure.

Char Type
I ran into problems passing a char as a

parameter between Delphi and a
CodeWarrior DLL. Consider this bit of
code in Delphi:

type
k: char;
num: smallint;

begin
k := ‘X’;
DoSomething(k,num); { pass “k” to the

DLL}
end;

Here is the routine in the DLL:

procedure DoSomething(k:char; var
num:integer);
begin

num := ORD(k);
end;

I expected that num would now equal
88, the ASCII value for “X”. Instead, in one
case, the ordinal value of the character was
-168.

It seems to me that when sent by Del-
phi to the DLL, the lower order byte of the
variable for the character is correct, but the
higher byte is undefined. The Delphi lan-
guage guide says, “A Char is stored as an
unsigned byte”, and this is subtly different
from CodeWarrior language reference
which says, “A CHAR variable occupies
two byrtes of storage, except in packed
array and records.” In other words, Delphi
defines the single, low-order byte, while

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

CodeWarrior defines the char as two bytes.
So, that high-order byte in the Delphi char
is likely to not be zero, as you might expect.

To make sure I’m only looking at the
character byte itself, I do this immediately
upon entering the DLL routine:

procedure DoSomething(k:char; var
num:integer);
begin

k := CHR(ORD(k) mod 256); { consider
only the lower byte}

num := ORD(k);
end;

String Types
Passing strings between the host pro-

gram and the DLL is another challenge.
Both Delphi and Visual Basic are known to
handle certain data types in very odd ways,
and I suspect that strings fall into this cat-
egory.

First of all, we must note that Delphi
has a few different kinds of string types.
The “standard” Pascal string that we Mac
types are used to is defined by Delphi
under the name “ShortString”. Delphi also
defines a “long string” which is a zero-
terminated C-style string. Just to trap the
unwary, Delphi usually defines the type
string as a long string. (There is a $H
compiler switch to change the meaning of
this.)

To keep my DLL source code as catho-
lic as possible, I’ve been declaring my own
“ShortString” type on the Mac side, which
helps to remind me of the Delphi quirks in
this.

The scary part of the story is that Del-
phi and CodeWarrior seem to have different
ways of treating strings when it comes to
passing them as parameters. For example,
to pass a string as a parameter, we can
define the string as a var on the DLL side,
but we do not do that on the host Delphi
side. Delphi always passes a string pa-
rameter as an implicit pointer, and that
appears to match what CodeWarrior does

when we use var. However, if we declare
the string var on both sides, the host app
will crash. This certainly warrants further
study. But for now, here is what works:

In CodeWarrior, we declare a routine
like this:

type
ShortString = string[255];

procedure ProcessThisText (var
sss:ShortString); DLLEXPORT;

In Delphi, we declare this call as:

procedure ProcessThisText(sss:
ShortString); pascal; external ‘CALCS.DLL’;

We can then make use of this call with
code like this:

sss := 'Sample Text';
ProcessThisText(sss);

If you get nervous about the lack of
symmetry by having var only on one side,
there is another solution: we can pass a
pointer to the string. Here’s how: In the
CodeWarrior code for the DLL, we define a
pointer as the type for this parameter.

type
ShortString = string[255];
StrPtr = ^ShortString;

procedure ProcessThisText(p:StrPtr);
DLLEXPORT;

Note that here on the DLL side, I’m
giving an explicit pointer type for a string,
so that we can easily de-reference it. As an
example, the following segment simply
changes the second character of the re-
ceived string to an “X”:

procedure ProcessThisText (p:StrPtr);
begin

p^[2] := 'X';
end;

Now let’s move over to the Delphi host
app. This time, I declare the DLL calls
using just plain pointers. For example:

procedure ProcessThisText(p:pointer);
pascal; external ‘CALCS.DLL’;

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Using a plain pointer makes it easy to
use this call in the Delphi code, without
having to coerce types constantly. Here is
an example:

var
sss: ShortString;

begin
sss := 'Sample Text';
ProcessThisText(@sss);

end;

Note that since we are passing a
pointer, we can anticipate that the called
routine in the DLL may modify the string,
and we’ll see that modification when the
call returns back in the main program.

Boolean Arrays
In CodeWarrior, a Boolean array is

stored one Boolean bit per bytes, and a
packed array of Boolean is stored as a
bitstring. A packed array of 16 Booleans
would require two bytes for storage. Del-
phi is different. Even in a packed array, a
Boolean requires one byte, so a packed
array of 16 Booleans requires 16 bytes.
Conclusion: You can’t pass a packed
Boolean array in this way. Either use array
of Boolean (not packed) or use bit operators
to get at the bit you want.

Also, be aware that Pascal in
CodeWarrior Pro version 1 has serious bugs
involving packed arrays of booleans. You
should use CW Pro 2 or later instead.

Calling Conventions
You thought it was nasty accounting

for the differences between calling conven-
tions for C and Pascal? Well, the rules for
DLL make that sound trivial. There are
variations to establish the order in which
parameters are passed, which piece of code
does cleanup, whether names are “deco-
rated”, how the case to be used for names is
determined, and whether registers are used.

If you want to cut to the chase, I’ll give
you the “answers” right away: When creat-
ing a DLL in CodeWarrior, use the default

calling convention (that is, do nothing
special). When using that DLL from Del-
phi, be sure to use the keyword pascal in all
declarations. Now, if you want the details
about this match-up, read on!

The best sources for information call-
ing conventions as used by CodeWarrior
and Delphi are these:

• “Inside CodeWarrior Professional:
Pascal Compiler Guide”, in the section,
“Calling Conventions for Windows95/
NT”

• Borland Delphi 3, “Object Pascal Lan-
guage Guide”, chapter 19, “Control
Issues”
The DLLs that comprise Windows

itself use a convention that is defined by
Microsoft and is named stdcall. As a result,
this convention would seem to be the clos-
est thing to a lowest common denominator.
Microsoft also defines two other conven-
tions, cdecl and fastcall.

Delphi offers five different directives:
register, pascal, cdecl, stdcall, and safecall.
Interestingly, the default is register. Note
what this means! If you do not specify
calling convention, you will generate code
that uses a different convention than that of
Windows.

Metrowerks CodeWarrior supports
stdcall, cdecl, fastcall and its own unnamed
convention. The default is that unnamed
convention. Once again, if you do not
address the issue of calling convention,
your CodeWarrior DLL is likely to run into
problems if you try to use it in Delphi!

Delphi’s register convention and
Microsoft’s fastcall convention (which is
supported by CodeWarrior) both attempt to
pass some parameters via registers, and this
conceptually can improve performance.
However, the two conventions appear to be
defined differently, so they cannot be used
together to pair a DLL with an app that
uses it.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

This table summarizes and contrasts
the calling conventions defined or sup-
ported by Windows, Metrowerks and
Delphi:

Argument Uses Stack Name Case
Defined by Name BD CW Order Registers Clean-up Decoration Translation
Microsoft cdecl √ √ Right-to-left No Caller _name none
Microsoft stdcall √ √ Right-to-left No Routine _name@391 none
Microsoft fastcall √ Right-to-left Yes2 Routine @name none
CodeWarrior (none) √ √ Left-to-right No Routine name 1st appearance
Delphi pascal √ Left-to-right No Routine ? ?
Delphi register √ √ Left-to-right Yes3 Routine ? ?
Delphi safecall √ Right-to-left No Routine ? ?

BD – Supported in Borland Delphi
CW – Supported in Metrowerks CodeWarrior
√ – Environment supports this convention. The default convention is shown with an outline-style checkmark.
√ √ – Default. Note that CodeWarrior and Delphi have different defaults, and neither is a “standard” defined by Microsoft.

Therefore, if you don’t take calling conventions into account, your chance of getting these guys to talk successfully to each other
is near zero.

1 See discussion below.
2 The fastcall convention uses registers for the first two arguments that are four bytes or smaller in size.
3 Delphi ’s register convention passes three arguments in registers.

If you intend to pass arguments be-
tween routines in a Delphi host and a
CodeWarrior DLL, it is imperative that you
define the same calling convention on both
sides. The obvious choice to use is stdcall:
it is defined by Microsoft, it is the scheme
used by Windows itself, and it is supported
by both Delphi and CodeWarrior.

However, there is a problem with
stdcall: name decoration. If you create a
DLL with CodeWarrior using the stdcall
convention, the actual routine names in the
DLL will be “decorated” as shown in the
table above. For example, suppose you
write a routine named “AddNumbers”
which has 20 bytes worth of parameters;
the actual name carried within the DLL
would be “_AddNumbers@20”. The prob-
lem is that Borland Delphi does not
recognize these decorated names. When
you try to launch the Windows app, Delphi
complains that the routine is missing, with
a message like this:

Error Starting Program:
The MYPROJ.EXE file is
linked to missing export
MYDLL.DLL:AddNumbers.

If you try to access a routine explicitly
named “_AddNumbers@20” then that will
work, but that’s clearly going to break the
next time you revise the calling sequence.

(Windows95 supplies a command
“QuickView” that can tell you details about
what lurks inside of a DLL. This is how to
determine what the actual routine names
are within the DLL. To use QuickView,
point to the DLL file icon, and right-click.)

It’s a trifle suspicious that only the
CodeWarrior manual seems to discuss the
issue of name decoration. The DLLs that
comprise Windows itself are supposedly
written to stdcall, but the routines inside do
not have name decoration, despite the
CodeWarrior’s implication that name deco-
ration is a basic part of stdcall.

In inspecting the above table, there
seems to be only one other match between
the calling conventions of CodeWarrior and
Delphi. This is the “pascal” convention of
Delphi, which seems to match the default
convention of CodeWarrior. This is indeed
the solution! We take the default in
CodeWarrior, and then apply the pascal
convention in Delphi.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Shaking Hands
Here is how I declare my functions and

procedures in the CodeWarrior code that
creates the DLL:

function AddSingle(i,j:real): real;
{ $IFC DLLTARGET}

DLLEXPORT;
{ $ENDC}

Note that we take the default calling
convention by not using any explicit con-
vention keyword. When we are building a
DLL, the DLLTARGET compiler variable
will be true, and the DLLEXPORT keyword
will be applied. If for some other purpose
you do need to use an explicit calling con-
vention, the keyword goes within the IFC
test, just before the DLLEXPORT keyword.

After we take the DLL over to Win-
dows, we can access it in Borland Delphi
with a statement like this:

function AddSingle(a,b:single): single;
pascal; external 'CALCS.DLL';

The “pascal” keyword matches the
default calling convention used by
CodeWarrior. Note that I am careful to use
the same 4-byte floats on both sides, “real”
on CodeWarrior and “single” on Delphi.

Using Another Convention
If you intend to use some convention

other than the CodeWarrior default, you
should know that the Inside CodeWarrior
Professional: Pascal Compiler Guide gives
incorrect information on how to invoke
these conventions. To export a routine
using the default calling convention, the
statement looks like this:

function AddSingle(i,j:real): real;
DLLEXPORT;

To use the stdcall convention instead,
the manual talks about “:_stdcall”, but that
seems to have been copied over incorrectly
from the C documentation. The correct

way to do this in Pascal is with a simple
keyword, like this:

function AddSingle(i,j:real): real;
stdcall; DLLEXPORT;

I assume the other conventions are
invoked in a corresponding way.

Files Produced by
CodeWarrior
When constructing a DLL,

CodeWarrior emits two files. If you are
create a DLL named “CALCS”, say, you will
get the DLL itself, “CALCS.DLL” and also a
file with the name “CALCS.DLL.lib”. The
purpose of the second file is confusing, and
even some of Metrowerks’ support people
got sidetracked by this and gave erroneous
advice.

That “lib” file is used when building a
second CodeWarrior project that makes use
of the DLL. The key fact about these files is
this: the "filename.DLL.lib" is usable only
by CodeWarrior, and is both unnecessary
and irrelevant for use of the DLL from
anywhere else. Borland Delphi simply
investigates the DLL itself at compile-time
to pick up the same information.

So, to build DLLs in CodeWarrior for
use in Delphi, just ignore the “xxx.DLL.lib”
file.

Mac Pascals vs.
Delphi Pascal
While the crossplatform library ap-

proach works well, you’ll need to program
the interface of your Windows app in Del-
phi directly. At that point, you must deal
with differences between Delphi and other
Pascals.

Knowing Pascal on the Mac, especially
Object Pascal, will be vastly useful to you in
learning Delphi. You’ll be writing juicy
Delphi code quickly and you’ll also dis-
cover that large chunks of your

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

non-interface Mac code can be ported in
toto. However, Delphi’s flavor of Pascal is
not the same as Think/CodeWarrior/MPW.
There are syntactic differences that must be
addressed. In fact, according to David
Intersimone, one of the key Delphi design-
ers, the reason Pascal was chosen as the
basis for Delphi was because “we [Borland]
own it” and could modify the language
with minimal complaints. A new Delphi
programmer coming from Mac would do
well to review the language manual care-
fully. Just a few examples:

Delphi allows two units to cross-refer-
ence each other, as long as at least one has
the “uses” clause in its implementation
section. Two object definitions can refer to
each other, but only if they are within the
same “type” section.

A continuing annoyance in moving
Pascal code to Delphi is that it doesn’t
support StringOf, Concat, “&” or “|”. On
the other hand, Delphi does provide “+” to
concatenate strings.

Delphi/Windows Oddities
Mac Pascal programmers are spoiled

by the elegance of Think Pascal and the
power of CodeWarrior (too bad we don’t
have that in one package). Although Del-
phi is amazing, there is a decided lack of
the crisp polish we’re used to. There is a
single source file window, with tabs hori-
zontally to choose a file. I guarantee you
will despise the Delphi editor; I do most of
my serious Delphi coding using the
CodeWarrior editor.

The Delphi IDE keybindings are not
configurable, there are no real resources, the
number of files explodes with little effort,
only one project can be open at a time, and
every “form” has its own source unit. De-
bugging and the object browser are
pathetically inferior to Think Pascal’s.

Delphi comes with a very rich set of
components, with a lively 3rd party market
as well. But there is danger of a “close

enough” syndrome: using an existing
component that is suitable, but not ideal,
for a given purpose. And since components
are compiled separately, it’s not easy to
examine source code to quickly modify a
subclass.

When In Rome ... Doing
Things the Delphi Way
After using RAD, you may never want

to go back. The allure of using RAD is so
captivating that it softens the blow of hav-
ing to be involved with Windows. To take
advantage of the power, the Mac program-
mer must re-think some issues. Here are
some examples:

Delphi provides hooks for “event
handlers”, routines that are called when
certain events occur. When used well, this
streamlines and clarifies code. For exam-
ple, rather than calling some needed
routine when an interface action happens,
attach code to the “OnChange” event. Just
add the data to the list whereever needed,
but they have your clean-up code in the
OnChange handler. You’ll quickly get very
addicted to having these event hooks avail-
able, and it’s frustrating when you expect
one that turns out to not exist (such as
when a cell is edited in a grid).

It takes time to warm to the notion of
storing your data within the visual compo-
nents themselves. For example, a checkbox
itself is used to store a setting rather than
being used to set a value somewhere else.
Doing this makes it easy to rename or rear-
range components.

Delphi’s OnIdle is not the same as a
Mac null event. When processing an
OnIdle message, if you display any alerts
then additional OnIdle triggers will occur
as the user manipulates the alert.

A very major difference is that almost
all actions of Delphi interface components
wind up being handled by methods of the
form rather than of the component in-

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

volved. And, since each form has its own
unit, this makes it awkward to organize
methods by function rather than form.
Coming from the Mac, this all seems very
odd: it seems reasonable and proper that a
button should handle its own clicks. And
yet, if that click causes some chain of events
to occur, it indeed would be better to have a
bit of indirection, in which the button calls
some method (of something else). That
way, it would be easy to also call the same
method if we wish to extend the app with a
new command, scripting support or
interapp messaging. The practice in Delphi
is not wrong, it is just different and it may
be better.

Delphi and “Properties”
A very significant difference between

Delphi and other Pascals is the idea of
“properties” of an object class. Both prop-
erties and fields are used in Delphi, and to
the first-time observer, they appear to be
used in the same way. To wit, both might
have assignments like this:

pondscum.density := 1.34;
pondscum.color := kPutridGreen;

Now here's the wacky part. A “field”
is a real instance variable, but a “property”
merely acts like one. The definition of a
property (within the class definition) looks
like this:

property color:TColor read GetColor write
SetColor;

When an assignment statements ap-
pears to be assigning the value of a
property, what it's really doing is calling the
method specified by the “write” part of the
definition. (And a statement like “itsColor
:= pondscum.color;” is compiled into a call
to the method defined by the “read” part.)

So, an assignment like this:

pondscum.color := kPutridGreen;

is actually executed as though it were
this:

pondscum.SetColor(kPutridGreen);

The code for “SetColor” can do any-
thing. For example, it could accept the
change in the setting, but also trigger a
“repaint” event (like an inval). Thus, when
you assign a new value to color, not only
does it change the internal setting, it also
refreshes the screen to show the change!!!!

Properties are also shown on the “ob-
ject inspector” at design-time, and so when
you are working on an interface and revise
a property, the dialog being designed in-
stantly reflects changes through this
mechanism.

With properties, simple assignments
become very powerful, and they encourage
you to protect variables and go through
methods instead, as is good practice. How-
ever, properties do add yet another
non-standard Borland quirk to the lan-
guage, and it can be a challenge to revise a
variable without triggering these other
side-effects.

Suggested Sources for
Delphi Information
It’s been said, “There are no amateur

Mac programmers, since programming the
Mac requires professional skills”. That
sounded like a macho boast until I started
programming Delphi and went looking for
technical answers. There are a lot of newbie
programmers in Delphi, which says a lot
about the accessibility and power of the
environment but makes it tough to find
solid sources of nitty-gritty info. Here are
some sources I’ve found valuable:

• Delphi tech info website:
http://www.inprise.com/devsupport/
delphi/ti_list/

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

• UNDU website:
http://www.undu.com/

• 3rd party websites: info, free compo-
nents
http://www.amano-blick.com/
~gnunn/gexperts.htm
http://members.tripod.com/
~delphipower/
http://www.delphideli.com/
quickmap.htm
http://www.cyberramp.net/~jayres/
http://www.cswnet.com/~choate/
dex/
http://www.westend.de/
~hoerstemeier/
http://www.delphi-jedi.org/

• “Tomes of Delphi”: While Delphi pro-
vides a rich set of libraries for all
manner of system functions, at some
point you’re going to want to call
native Windows functions. This is a
problem for Pascal programmers,
because virtually all books on Win-
dows programming use examples in C
(or its descendents). But now there are
two new books that document the
Windows calls in Pascal. The “Tomes
of Delphi” are in two volumes
(Wordware Publishing); one covers
graphics, and the other covers other
core libraries. Although the authors
focus on calling Windows from Delphi,
in truth there is very little Delphi-
specific information in the books and
they can be used just as effectively by
CodeWarrior programmers.

• Easily overlooked, the CodeWarrior
distribution includes a goodly number
of Pascal examples for Windows.
You’ll find them in CodeWarrior
Examples:Win32_x86 Examples:Pascal.

Conclusion
Not only is it possible to write a single

Pascal unit that can be used in both a
CodeWarrior and Delphi project, it’s practi-
cal and convenient as well. On the
Windows side, an experienced Mac Pascal
programmer tackling Delphi for the first
time will find much of it to be familiar
territory, and the appeal and power of that
environment more than compensates for its
quirks.

